

Leaf Area Index identified as a major source of variability in modelled

CO₂ fertilization

Qianyu Li^{1,5}, Xingjie Lu², Yingping Wang³, Xin Huang⁴, Peter M. Cox⁵, Yiqi Luo^{1,2}

¹Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China

² Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ 86011, USA

³CSIRO Marine and Atmospheric Research, Centre for Australian Weather and Climate Research, PMB #1, Aspendale, Victoria 3195, Australia

⁴Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

10 ⁵College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, UK

Correspondence to: Yiqi Luo (luoyiqi@mail.tsinghua.edu.cn)

Abstract. The concentration-carbon feedback factor (β), also called the CO₂ fertilization effect, is a key unknown in climate-20 carbon cycle projections. A better understanding of model mechanisms that govern terrestrial ecosystem responses to elevated CO₂ is urgently needed to enable a more accurate prediction of future terrestrial carbon sink. We calculated CO₂ fertilization effects at various hierarchical levels from leaf biochemical reaction, leaf photosynthesis, canopy gross primary production (GPP), net primary production (NPP), to ecosystem carbon storage (*cpool*), for seven C_3 vegetation types in response to increasing CO₂ under RCP 8.5 scenario, using the Community Atmosphere Biosphere Land Exchange model (CABLE). Our 25 results show that coefficient of variation (CV) for the CABLE model among the seven vegetation types is 0.15-0.13 for the biochemical level β , 0.13-0.16 for the leaf-level β , 0.48 for the β_{GPP} , 0.45 for the β_{NPP} , and 0.58 for the β_{cpool} . The low variation of the leaf-level β is consistent with a theoretical analysis that leaf photosynthetic sensitivity to increasing CO₂ concentration is almost an invariant function. In CABLE, the major jump in CV of β values from leaf- to canopy- and ecosystem-levels results from divergence in modelled leaf area index (LAI) within and among the vegetation types. The 30 correlations of β_{GPP} , β_{NPP} , or β_{cpool} with β_{LAI} are very high in CABLE. Overall, our results indicate that modelled LAI is a key factor causing the divergence in β values in CABLE model. It is therefore urgent to constrain processes that regulate LAI dynamics in order to better represent the response of ecosystem productivity to increasing CO₂ in Earth System Models.

1. Introduction

Terrestrial carbon sink, taking up roughly 30% of anthropogenic CO₂ emissions, is of great uncertainty and vulnerable to global climate change (Le Quéré et al., 2015; Cox et al., 2000). The CO₂ fertilizing effect, also called the concentration-carbon feedback factor (β), has been identified as a major uncertainty in modeling terrestrial ecosystem response to future climate change. In Coupled Model Intercomparison Project (C4MIP) and Coupled Model Intercomparison Project Phase 5 (CMIP5), all models agree that terrestrial carbon sink will gradually saturate in the future but disagree on the magnitude of β (Friedlingstein et al., 2006; Arora et al., 2013; Friedlingstein et al., 2015). Some studies pointed out that the contribution of β is 4 or 4.5 times larger, and more uncertain, than carbon-climate feedback factor (γ) (Gregory et al., 2009; Bonan & Levis, 2010; Arora et al., 2013). Apart from the substantial uncertainty among different models, Smith et al. (2016) suggested that Earth System Models (ESMs) in CMIP5 overestimate global terrestrial β values compared with remote sensing data and Free-

Air CO₂ Enrichment (FACE) experiment results. The large disparity between models and reality gives us little confidence in making policies to combat global warming.

55

45

50

Efforts have been made to identify causes for the diverse ecosystem responses to eCO_2 and increasing temperature in models. For example, Zeng (2004) used different parameterizations of CO₂ fertilization, soil decomposition rate and turnover time to explain the total land carbon change in a coupled earth system model. Matthews et al. (2005) showed different parameterizations of temperature constraints on photosynthesis strongly affects γ results. Tachiiri et al. (2012) found the maximum photosynthesis rate (V_{cmax}) and specific leaf area (SLA, leaf area per unit dry mass) had the most significant contributions to both of β and γ with a ESMs emulator. To gain insight into the characteristics of biogeochemical cycles β and γ , it's necessary to identify sensitive parameters and important processes in models from a mechanistic way.

60

The response of ecosystem carbon cycle to eCO₂ is primarily driven by stimulation of leaf-level carboxylation rate in plants by eCO₂ (Long et al., 2004; Heimann et al., 2008). The CO₂ stimulation of carboxylation then translates into increasing GPP and NPP, possibly leading to increased biomass and soil carbon storage and slowing down anthropogenically driven increase

65 in atmospheric CO₂ (Canadell et al., 2007; Iversen et al., 2012; De Kauwe et al., 2014). The leaf-level CO₂ fertilization is generally well characterized with models from Farquhar et al. (1980) and Collatz et al. (1991, 1992), which have been adopted by most land surface models (Bonan et al., 2013; Wang et al., 1998; Cox, 2001). Previous research with both theoretical analysis and data synthesis from a large number of experiments has revealed that normalized CO₂ sensitivity of leaf-level photosynthesis, which represents kinetics sensitivity of photosynthetic enzymes, varies little among different vegetation types 70 at a given CO₂ concentration (Luo & Monney, 1996; Luo et al., 1996). However, the CO₂ fertilization effects are considerably more variable at canopy- and ecosystem-level than at the leaf-level, because a cascade of uncertain processes, such as soil moisture and canopy structure, influence GPP, NPP and carbon storage (Friedlingstein et al., 2015; Fatichi et al., 2016). Amongst these processes, leaf area index (LAI) largely affects canopy assimilation and plant growth under condition of eCO₂, and representation of LAI in plant productivity models causes large uncertainty (Ewert, 2004). Models generally predict that 75 LAI dynamics will respond to eCO₂ positively due to enhanced leaf biomass, then increasing LAI will in turn feed back to greater canopy GPP as a result of more light interception. However, the relative contributions of the response of leaf-level photosynthesis and LAI to β of GPP have been rarely quantified and compared in previous studies. Therefore, understanding

which processes in ecosystem models amplify variability in β from biochemical and leaf levels to canopy and ecosystem levels is quite important.

80

As to the spatial pattern, the largest absolute CO₂ fertilizing effects at ecosystem level were found in tropical regions mainly because of high basic NPP (Joos et al., 2001; Peng et al., 2014). But the variation of relative β effects across different geographical locations and vegetation types and the dominating factors are rarely discussed and often ignored. In this study, we tried to answer the following questions: how and why β values at different hierarchical levels vary across different geographical locations and vegetation types? We used Community Atmosphere Biosphere Land Exchange model (CABLE)

to identify key mechanisms driving diverse β values under RCP 8.5 scenario within and across seven C₃ vegetation types.

2. Materials and methods

2.1 CABLE model description

CABLE (version 2.0) is a global land surface model as described by Wang et al. (2010, 2011) and is improved by including 90 global carbon, nitrogen and phosphorus cycles. To simplify the study, phosphorus and nitrogen cycles are not used. Leaf photosynthesis, stomatal conductance, and heat and water transfer in CABLE are calculated using the two-leaf approach (Wang & Leuning, 1998) for both sunlit leaves and shaded leaves. The distinction between sunlit and shaded leaves is necessary in scaling from leaf to canopy because the response of photosynthesis to the absorbed photosynthetically active radiation (PAR) is nonlinear. The two-leaf model uses the same set of equations for calculating photosynthesis, transpiration and sensible heat fluxes for an individual leaf, but with the bulk formulation for the parameters for all sunlit and shaded leaves separately. For a

95

105

given leaf parameter P, the corresponding parameter values for the two big leaves are calculated as:

$$P_1 = \int_0^{\Lambda} p(\lambda) f_{sun}(\lambda) d\lambda \text{ (big sunlit leaves)}$$
(1)

$$P_2 = \int_0^{\Lambda} p(\lambda) \left(1 - f_{sun}(\lambda)\right) d\lambda \text{ (big shaded leaves)}$$
(2)

 f_{sun} is the fraction of sunlit leaves within a canopy, calculated by $f_{sun} = \exp(-k_b \lambda)$, where k_b is the extinction coefficient of 100 direct beam radiation for a canopy with black leaves. λ is cumulative LAI.

CABLE calculates plant photosynthesis rate according to Leuning (1990). Leuning (1990) described a method to calculate stomatal conductance, CO_2 assimilation, and intercellular CO_2 by solving equations describing the supply of CO_2 through stomata and demand for CO₂ in photosynthesis (Farquhar et al., 1980) simultaneously. Since C₃ plants have similar mechanisms for photosynthesis and respond to eCO_2 much stronger than C_4 plants, C_3 plants are only considered in this study.

Canopy net photosynthesis rate is calculated as:

$$A = \min\{A_c, A_q, A_p\} - R_d = G_{st}(C_s - C_i)$$
(3)

$$A_{c} = V_{cmaxbig} * \frac{C_{i} - \Gamma_{*}}{C_{i} + K_{c}(1 + O_{i} - K_{O})}$$
(4)

(6)

$$A_q = J_{cmaxbig} * \frac{C_i - \Gamma_*}{C_i + 2\Gamma_*}$$
(5)

$$110 \qquad A_p = 0.5 * V_{cmaxbig}$$

115

Where A_c , A_q and A_p are assimilation rates limited by Rubisco activity, RuBP regeneration and sink respectively. R_d is day respiration, which is proportional to $V_{cmaxbig}$. $V_{cmaxbig}$ is the maximum catalytic activity of Rubisco of big leaves. C_i is intercellular CO₂ concentration. Γ_* is the CO₂ compensation point in the absence of day respiration. K_c and K_o are Michaelis-Menten constants for CO₂ and O₂ respectively. O_i is intercellular oxygen concentration. Γ_* , K_c and K_o are only functions of leaf temperature. $J_{cmaxbig}$ is the maximum rate of photosynthesis at saturating C_i for a given absorbed photo irradiance of big leaves. For sunlit and shaded leaves, $V_{cmaxbig}$ and $J_{cmaxbig}$ are defined as follows:

$$V_{cmaxbig,1} = v_{cmax,25} * f_{vcmax}(T_{f,1}) * \int_0^{\Lambda} \exp(-k_b \lambda) \exp(-k_n \lambda) d\lambda = v_{cmax,25} * f_{vcmax}(T_{f,1}) * \frac{1 - \exp[-\text{LAI}(k_n + k_b)]}{k_n + k_b}$$
(7)

$$V_{cmaxbig,2} = v_{cmax,25} * f_{vcmax}(T_{f,2}) * \int_0^{\Lambda} [1 - \exp(-k_b\lambda)] \exp(-k_n\lambda) d\lambda = v_{cmax,25} * f_{vcmax}(T_{f,2}) * \left\{ \frac{1 - \exp(-k_h \text{LAI})}{k_n} - \frac{1 - \exp(-\text{LAI}(k_h + k_b))}{k_n + k_h} \right\}$$

$$(8)$$

120
$$J_{cmaxbig,1} = j_{cmax,25} * f_{jcmax}(T_{f,1}) * \int_0^\Lambda \exp(-k_b \lambda) \exp(-k_n \lambda) \, d\lambda = j_{cmax,25} * f_{jcmax}(T_{f,1}) * \frac{1 - \exp[-\text{LAI}(k_n + k_b)]}{k_n + k_b}$$
(9)

$$J_{cmaxbig,2} = j_{cmax,25} * f_{jcmax}(T_{f,2}) * \int_{0}^{\Lambda} [1 - \exp(-k_b\lambda)] \exp(-k_n\lambda) d\lambda = j_{cmax,25} * f_{jcmax}(T_{f,2}) * \left\{ \frac{1 - \exp(-k_nLAI)}{k_n} - \frac{1 - \exp(-LAI(k_n + k_b)]}{k_n + k_b} \right\}$$
(10)

Where $v_{cmax,25}$ is maximum carboxylation rate when photosynthesis is limited by Rubisco activity of a leaf. $j_{cmax,25}$ is maximum potential electron transport rate of a leaf. It's assumed $j_{cmax,25}=2v_{cmax,25}$ in the model. $f_{vcmax}(T_{f,1})$ and $125 \quad f_{jcmax}(T_{f,1})$ describe the temperature dependence of $v_{cmax,25}$ and $j_{cmax,25}$ for sunlit leaves respectively. $f_{vcmax}(T_{f,2})$ and $f_{jcmax}(T_{f,2})$ describe the temperature dependence of $v_{cmax,25}$ and $j_{cmax,25}$ for shaded leaves respectively. k_b is extinction

coefficient of a canopy of black leaves for direct beam radiation. k_n is an empirical parameter used to describe the vertical distribution of leaf nitrogen in the canopy.

 G_{st} is stomatal conductance, and is calculated as:

130
$$G_{st} = G_0 + \frac{a * f_W * A}{(C_s - \Gamma)(1 + D_s/D_0)}$$
(11)

Where G_0 is stomatal conductance when A=0. a and D_0 are empirical constants, f_w is an empirical parameter describing the availability of soil water for plants. A is net assimilation rate in Equ. (3). C_s is CO₂ mol fraction at the leaf surface. Γ is CO₂ compensation point of photosynthesis. D_s is vapour pressure deficit at the leaf surface.

135 Leaf Area Index (LAI) is calculated as:

150

$$LAI = C_{leaf} * SLA \tag{12}$$

Where C_{leaf} is leaf carbon pool, SLA is specific leaf area.

In CABLE model, leaf growth is divided into four phases. Phase 1 is from leaf budburst to the beginning of steady leaf growth, phase 2 is from the start of steady leaf growth to the start of leaf senescence, phase 3 is the period of leaf senescence, and phase

- 4 is from the end of leaf senescence to the start of leaf bud burst. During phase 1, allocation of available carbon to leaf is fixed to 0.8, and allocation to wood and root are set to 0.1 for woody biomes, and 0 and 0.2 respectively for non-woody biomes. During steady leaf growth (phase 2), the allocation coefficients are constants but vary from biome to biome, taking their values from Fung et al. (2005). During phases 3 and 4, the leaf allocation is zero and its phase 2 allocation is divided between wood and root in proportional to their allocation coefficients. For evergreen biomes, leaf phenology remains at phase 2 throughout
- 145 the year (Wang et al., 2010). SLA is PFT-specific and does not change through time in this study.

Gross primary production (GPP) is the sum of canopy net photosynthesis rate (A) and day respiration (R_d). Net primary production (NPP) is calculated as the difference between GPP and autotrophic respiration (both maintenance and growth respiration), and acts an input to the compartmental nine-pool carbon cycle model. The network for carbon transfer in the compartmental model is based on CASA' model (Fung et al., 2005), including three vegetation pools (leaf, wood and root), three litter pools (metabolic litter, structure litter and coarse wood debris), three soil pools (fast soil pool, slow soil pool and

passive soil pools). Heterotrophic soil respiration is calculated as the sum of the respired CO_2 from the decomposition of all litter and soil organic carbon pools (Wang et al., 2010).

2.2 Experimental design

155 CABLE was first spun up by using meteorological forcing from Community Climate System Model (CCSM) simulations during 1901 to 1910 repetitively until a steady state was achieved. Hourly meteorological driving data include: temperature, specific humidity, air pressure, downward solar radiation, downward long-wave radiation, rainfall, snowfall, and wind. In order to separate the CO₂ fertilization effect from the effect of climate change, climate forcing was held as the average from 1901 to 2100. Atmospheric CO₂ concentrations were from the historical period (1901-2010) and from RCP8.5 scenario for 2011 to 2100. The spatial resolution of CABLE used here is 1.9°×2.5°.

2.3 Calculation of β values at five hierarchical levels

We aimed to analyze CO₂ fertilization effects from biochemical level (\mathcal{L}), leaf photosynthesis (p), canopy gross primary production (GPP), net primary production (NPP), and ecosystem carbon storage (*cpool*). β values of the five levels were calculated as the normalized sensitivity of those variables to eCO₂.

165 Equ. (4) and (5) can be simplified as:

$$A_{c} = v_{cmax,25} * f_{vcmax} (T_{f}) * \frac{C_{i} - \Gamma_{*}}{C_{i} + K_{c}(1 + C_{o} - K_{O})} * S = a_{c} * S$$
(13)

$$A_{q} = j_{cmax,25} * f_{jcmax}(T_{f}) * \frac{c_{i} - \Gamma_{*}}{c_{i} + 2\Gamma_{*}} * S = a_{q} * S$$
(14)

Where a_c and a_q represent leaf-level Rubisco- and RuBP-limit photosynthesis rates respectively:

$$a_{c} = v_{cmax,25} * f_{vcmax}(T_{f}) * \frac{c_{i} - \Gamma_{*}}{c_{i} + K_{c}(1 + c_{o} - K_{O})}$$
(15)

170
$$a_q = j_{cmax,25} * f_{jcmax}(T_f) * \frac{c_i - \Gamma_*}{c_i + 2\Gamma_*}$$
 (16)

S indicates the scaling factor that scales fluxes at the single top leaf of the canopy to whole canopy fluxes. For sunlit leaves:

$$S_{sun} = \frac{1 - \exp[-\text{LAI}(k_n + k_b)]}{k_n + k_b} \tag{17}$$

For shaded leaves:

$$S_{sha} = \frac{1 - \exp(-k_n \text{LAI})}{k_n} - \frac{1 - \exp[-\text{LAI}(k_n + k_b)]}{k_n + k_b}$$
(18)

175 where subscripts "sun" and "sha" denote the sunlit and shaded components of leaf-level scaling factors.

The rate of photosynthesis is typically RuBP-regeneration-limited when CO₂ concentration exceeds 300 ppm (Soolanayakanahally et al., 2009). Our results also show that photosynthesis rate under RCP8.5 scenario is mainly RuBP-regeneration-limited (results not shown). Leaf-level β_p for sunlit leaf and shaded leaf are defined as:

$$180 \qquad \beta_{p_{sun}} = \frac{1}{p_{sun}} * \frac{\mathrm{d}p_{sun}}{\mathrm{d}c_a} = \frac{1}{a_{qsun}} * \frac{\mathrm{d}a_{qsun}}{\mathrm{d}c_{isun}} * \frac{\mathrm{d}c_{isun}}{\mathrm{d}c_a} = \mathcal{L}_{sun} * \frac{\mathrm{d}c_{isun}}{\mathrm{d}c_a}$$
(19)

$$\beta_{p_{sha}} = \frac{1}{p_{sha}} * \frac{\mathrm{d}p_{sha}}{\mathrm{d}c_a} = \frac{1}{a_{qsha}} * \frac{\mathrm{d}a_{qsha}}{\mathrm{d}c_{isha}} * \frac{\mathrm{d}c_{isha}}{\mathrm{d}c_a} = \mathcal{L}_{sha} * \frac{\mathrm{d}c_{isha}}{\mathrm{d}c_a}$$
(20)

Where p_{sun} and p_{sha} are leaf-level photosynthesis rates for sunlit leaf and shaded leaf respectively. C_a is atmospheric CO₂ concentration. \mathcal{L} was first proposed by Luo et al. (1996). \mathcal{L} function is the normalized response of leaf photosynthesis to a small change in C_i and has been suggested to be an invariant function for C₃ plants grown in diverse environments. In this study, \mathcal{L} can be used to indicate leaf biochemical response to eCO₂. For sunlit leaf and shaded leaf, \mathcal{L} is defined as:

190

۲

$$\mathcal{L}_{sun} = \frac{1}{a_{qsun}} * \frac{da_{qsun}}{dC_{isun}} = \frac{3 * \Gamma_{*sun}}{(C_{isun} + 2*\Gamma_{*sun})(C_{isun} - \Gamma_{*sun})}$$
(21)

$$\mathcal{L}_{sha} = \frac{1}{a_{qsha}} * \frac{\mathrm{d}a_{qsha}}{\mathrm{d}c_{isha}} = \frac{3 * \Gamma_{*sha}}{(C_{isha} + 2* \Gamma_{*sha})(C_{isha} - \Gamma_{*sha})}$$
(22)

In this study, Γ_{*sun} and Γ_{*sha} are yearly average CO₂ compensation points in the absence of day respiration for sunlit leaf and shaded leaf respectively. Intercellular CO₂ concentration (C_i) varies significantly at daily, intra-annual and inter-annual basis. We're interested in how C_i responds to eCO₂ on an inter-annual basis. So we first outputted hourly C_i then calculated yearly GPP-weighted average C_i for sunlit leaf (C_{isun}) and shaded leaf (C_{isha}).

Canopy-level β_{GPP} is defined as:

$$\beta_{\rm GPP} = \frac{1}{\rm GPP} * \frac{\rm dGPP}{\rm dC_a} \tag{23}$$

Where GPP is the average annual GPP between the two adjacent years. dGPP and dC_a are the differences of GPP and C_a between two adjacent years respectively.

The sensitivity of yearly average LAI to CO₂ is defined as:

$$\beta_{\text{LAI}} = \frac{1}{\text{LAI}} * \frac{d\text{LAI}}{dc_a} \tag{24}$$

200 Where LAI and dLAI are similarly defined as those about GPP.

Canopy GPP is the sum of sunlit leaf GPP (GPP_{sun}) and shaded leaf GPP (GPP_{sha}). Big-leaf $\beta_{GPP_{sun}}$ (or $\beta_{GPP_{sha}}$) can be decomposed as the sum of normalized sensitivity of leaf-level *p*: $\beta_{p_{sun}}$ (or $\beta_{p_{sha}}$) and leaf-to-canopy scaling factor: β_{sun} (or $\beta_{s_{sha}}$) as shown in Equ. (23) and Equ. (24). Subscripts "sun" and "sha" denote the sunlit and shaded components of leaf-level photosynthesis and leaf-to-canopy scaling factors.

$$205 \qquad \beta_{\text{GPP}_{sun}} = \frac{1}{\text{GPP}_{sun}} * \frac{\text{dGPP}_{sun}}{dc_a} = \frac{1}{p_{sun*S_{sun}}} * \frac{\text{d}(p_{sun*S_{sun}})}{dc_a} = \frac{1}{p_{sun}} * \frac{\text{d}p_{sun}}{dc_a} + \frac{1}{s_{sun}} * \frac{\text{d}s_{sun}}{dc_a} = \mathcal{L}_{sun} * \frac{\text{d}c_{isun}}{dc_a} + \frac{1}{s_{sun}} * \frac{\text{d}s_{sun}}{dc_a} = \beta_{p_{sun}} + \beta_{s_{sun}}$$

$$(25)$$

$$\beta_{\text{GPP}_{sha}} = \frac{1}{\text{GPP}_{sha}} * \frac{\text{dGPP}_{sha}}{\text{d}c_a} = \frac{1}{p_{sha*S_{sha}}} * \frac{\text{d}(p_{sha*S_{sha}})}{\text{d}c_a} = \frac{1}{p_{sha}} * \frac{\text{d}p_{sha}}{\text{d}c_a} + \frac{1}{s_{sha}} * \frac{\text{d}s_{sha}}{\text{d}c_a} = \mathcal{L}_{sha} * \frac{\text{d}c_{isha}}{\text{d}c_a} + \frac{1}{s_{sha}} * \frac{\text{d}s_{sha}}{\text{d}c_a} = \beta_{p_{sha}} + \beta_{s_{sha}}$$

$$\beta_{s_{sha}}$$

$$(26)$$

210 Net ecosystem productivity level β_{NPP} is defined as:

$$\beta_{\rm NPP} = \frac{1}{{}_{\rm NPP}} * \frac{d{}_{\rm NPP}}{dc_a} \tag{27}$$

Where NPP and dNPP are similarly defined as those about GPP.

Ecosystem carbon storage level β_{cpool} is defined as:

215
$$\beta_{cpool} = \frac{1}{cpool} * \frac{\mathrm{d}cpool}{\mathrm{d}c_a}$$
(28)

Where *cpool* is the average of total ecosystem carbon storage between two adjacent year, d*cpool* is the difference of total ecosystem carbon storage between two adjacent year. Then these normalized sensitivities are of identical units (ppm⁻¹) and can be compared with each other.

220 There are ten patches in each model grid in CABLE. Each patch consists of a certain land use type with a specific fraction. We calculated β values and their coefficients of variation (CV) across different geographical locations within a specific PFT at different levels to explore the variability of β within PFTs. To study the inter-PFTs variation, we grouped parameters such as Γ_{*sun} , C_{isun} based on PFTs by calculating the mean values. Then we calculated β values for each C₃ plant and coefficients of variation of β values across plant types at different levels.

3. Results

230

235

3.1 Temporal trends of β for different vegetation types

At global scale, β_{cpool} values for different C₃ plants all decline with time from 2011 to 2100 under RCP8.5 scenario (Fig.1). However, the magnitudes of β_{cpool} differ across them, with the highest values occur in deciduous broadleaf forest from 2011 to 2075 and in shrub after 2075, and lowest values in deciduous needleleaf forest and tundra. β_{cpool} values for deciduous needleleaf forest and tundra nearly overlap over time.

3.2 Variations of intercellular CO₂ concentration and CO₂ compensation point

The ratios of C_i to C_a (C_i/C_a) are approximately constants with eCO₂ (Fig.2a and Fig.2b) for each vegetation type. For sunlit leaf, C_i/C_a values of different vegetation types range from 0.64 to 0.72 with CV=0.03 (Fig.2a). For shaded leaf, the range is 0.70 to 0.76 with CV=0.03 (Fig.2b). Evergreen broadleaf forest has the greatest C_i/C_a value, while deciduous needleleaf forest has the lowest C_i/C_a value. Values of CO₂ compensation point in the absence of day respiration (Γ_*) for a specific vegetation type do not change through time since we fixed air temperature in model simulation (Fig.2c and Fig.2d). But there is a huge variance among different C₃ plants becauses of different leaf temperature which Γ_* values depend on.

3.3 Comparison of β effects at different hierarchical levels

- Coefficient of variation (CV) for biochemical response \mathcal{L} , the ratio of the change of intercellular CO₂ concentration to the change of ambient CO₂ (dC_i/dC_a), leaf-level β_p , β_{LAI} , β_{GPP} , β_{NPP} and β_{cpool} across different geographical locations within each vegetation type are listed in Table 1. Variations of biochemical and leaf-level responses are relatively smaller than those at canopy and ecosystem levels within all C₃ plants. Divergence of dC_i/dC_a is the smallest. CVs of β_{LAI} are the largest for all the vegetation types. β_{GPP} values also greatly differentiate across different geographical locations. CVs of β_{NPP} are very similar to those of β_{GPP} for all the vegetation types except for the evergreen needleleaf forest. CVs of β_{cpool} are reduced compared with those of β_{NPP} for most vegetation types, except for evergreen broadleaf forest and tundra.

With yearly PFT-averaged C_i and Γ_* values (Fig.2), \mathcal{L}_{sun} , \mathcal{L}_{sha} , $\beta_{p_{sun}}$ and $\beta_{p_{sha}}$ were calculated for different vegetation types, and were plotted together with β_{GPP} , β_{NPP} and β_{cpool} at the year 2056 (the middle year within the prediction period) under RCP8.5 scenario (Fig.3). CV is marked above data points for each variable to indicate degree of variation among C₃ plants. Results show that at leaf biochemical level, \mathcal{L} factors for sunlit leaf and shaded leaf range from 0.00030 ppm⁻¹ to 0.00053 ppm⁻¹. Variations of \mathcal{L}_{sun} and \mathcal{L}_{sha} among vegetation types are small (CV=0.15 and 0.13). At leaf photosynthesis level, the range of values of $\beta_{p_{sun}}$ and $\beta_{p_{sha}}$ for the seven vegetation types is 0.00022 ppm⁻¹ to 0.00035 ppm⁻¹, and the variation among vegetation types is not significant (CV=0.13 and 0.16). But β values are diverging when scaled up to GPP

level with CV jumping to 0.48 among vegetation types. β values of deciduous broadleaf forest and shrub greatly increase 255 from leaf level to GPP level. However, scaling effects do not significantly amplify β_{GPP} for deciduous needleleaf forest, tundra and evergreen broadleaf forest. Values and variance of β_{NPP} are similar to those of β_{GPP} because NPP values linearly correlate with GPP values for all C₃ vegetation types (Fig.S4). Magnitudes of β_{cpool} for all vegetation types decrease compared with those of β_{NPP} and β_{GPP} . Shrub has the highest β_{GPP} and β_{NPP} values (around 0.0013 ppm⁻¹), but a smaller β_{cpool} value compared with deciduous broadleaf forest. Deciduous needleleaf forest has the lowest β_{GPP} , β_{NPP} and 260 β_{cpool} values. CV of β_{cpool} among vegetation types reaches the highest value (0.58) among all.

265

To further explore why β at canopy and ecosystem levels are diverging across different geographical locations within the same vegetation types, the correlations between β_{GPP} and β_{LAI} (Fig. S1), β_{NPP} and β_{LAI} (Fig. S2), β_{cpool} and β_{LAI} (Fig. S3) were plotted at the year 2056. Results show that β_{GPP} , β_{NPP} and β_{cpool} all have significant linear correlations with β_{LAI} for patches within the same vegetation type, except within evergreen broadleaf forest where the canopy of many patches closes. The correlations between β_{cpool} and β_{LAI} are weaker than those between β_{NPP} and β_{LAI} . Across different C₃ plant types, results also show that β_{LAI} linearly correlates with β_{GPP} , β_{NPP} and β_{cpool} (Fig. 4a, Fig. 4b and Fig. 4c), but with slopes that gradually decrease from 0.93 to 0.87 and 0.81.

3.4 β of sunlit and shaded leaves

270 To understand influences of LAI on canopy GPP, we investigate sunlit and shaded leaf GPP. Temporal trends of sunlit leaf GPP (GPP_{sun}) and shaded leaf GPP (GPP_{sha}) were plotted for each type of C₃ plants from 1901 to 2100 in Fig.5. From the beginning of simulation, GPPsha is higher than GPPsun for almost all C3 types. With significant increases of CO2 concentration from 2011, GPP_{sha} responds more drastically than GPP_{sun}. Shaded leaf GPP of deciduous broadleaf forest and shrub responds to eCO_2 more significantly than other vegetation types. However, a single sunlit leaf has higher photosynthesis 275 rate than a shaded leaf because of more radiation absorbed. Thus, the scaling factor of shaded leaves contributes more to the magnitude and sensitivity of canopy GPP.

280

Temporal trends were plotted for $\beta_{\text{GPP}_{sun}}(\beta_{\text{GPP}_{sha}})$ and decomposing factors $\beta_{p_{sun}}(\beta_{p_{sha}})$ and $\beta_{s_{sun}}(\beta_{s_{sha}})$ for each vegetation type (Fig.6). The sensitivities of GPPsun and GPPsha tend to approach zero through time because the decomposing factors $\beta_{p_{sun}}$, $\beta_{p_{sha}}$, $\beta_{s_{sun}}$ and $\beta_{s_{sha}}$ all decline with time. Values of $\beta_{p_{sun}}$ and $\beta_{p_{sha}}$ overlap through time for each vegetation type. Values of $\beta_{GPP_{sha}}$ are higher than those of $\beta_{GPP_{sun}}$ for all C₃ vegetation types. For deciduous needleleaf forest and tundra, both $\beta_{p_{sun}}$ ($\beta_{p_{sha}}$) and $\beta_{S_{sun}}$ ($\beta_{S_{sha}}$) contribute to the maginitudes and trends of $\beta_{\text{GPP}_{sun}}$ ($\beta_{\text{GPP}_{sha}}$). For evergreen needleleaf forest, deciduous broadleaf forest, shrub and C₃ grass, $\beta_{S_{sun}}$ ($\beta_{S_{sha}}$) dominates the magnitude and change of $\beta_{\text{GPP}_{sun}}(\beta_{\text{GPP}_{sha}})$. For evergreen broadleaf forest, $\beta_{S_{sha}}$ predominates before 2035.

285 **4. Discussion**

4.1 Variation of biochemical and leaf-level photosynthetic responses to eCO2

Most previous studies focused on variation in β for the land carbon storage, the standard definition of β as in Friedlingstein et al. (2006). However, accurate estimate of leaf-level β has not been attempted by modelling groups before. In this study, with the available outputs of biochemical parameters C_i and Γ_{*} in CABLE model, we calculated leaf-level β values with distinction of sunlit and shaded leaves for the first time. The calculation of leaf-level β simply through the sensitivity of GPP/LAI might lead to biases because some models used two-leaf or multiple-layer canopy structure. In our study, we also compared the sensitivities of GPP/LAI with leaf-level β values derived from C_i and Γ_{*}. Results show that the former calculation causes large biases, especially for trees (Fig.S5). Thus, the relatively large divergence of the sensitivities of GPP/LAI to eCO₂ in Hajima et al. (2014) may not indicate diverse leaf-level photosynthesis responses among CMIP5 models.
295 Another advantage of our calculation of leaf-level β is that the reason for the divergence of leaf-level β within and across

vegetation types can be traced back to difference from C_i and leaf temperature as shown in Fig.2.

The direct CO_2 fertilization effect occurs at leaf level and is determined by kinetic sensitivity of Rubisco enzymes to internal leaf CO_2 . In fact, the normalized short-term sensitivity of leaf level photosynthesis to CO_2 is mainly regulated by intercellular CO_2 concentration C_i and slightly influenced by leaf temperature, regardless of light, nutrient availability, and species characteristics (Luo et al., 1996; Luo & Mooney, 1996). In our study, modelled C_i/C_a values are approximately constant with eCO_2 for a specific vegetation type, and vary little within and across vegetation types. This is in line with FACE experimental results which show almost constant C_i/C_a values for different vegetation types under eCO_2 conditions (Drake et al., 1997; Long et al., 2004). Previous research showed that global temperature variation only caused a small influence on biochemical

305 response \mathcal{L} (Luo & Mooney, 1996). Therefore, biochemical and leaf-level β vary little within and among global vegetation types in this study.

In this study, we assume values of $j_{cmax,25}$ and $v_{cmax,25}$ are PFT-specific and do not change with time. In fact, downregulation of photosynthesis is observed in experiments when plants acclimate to eCO₂ in the long term. Downregulation

310 involves reduction in $v_{cmax,25}$ by about 13% and $j_{cmax,25}$ by about 5% on average (Long et al., 2004). Then the leaf biochemical response \mathcal{L}' for Rubisco-limit and RuBP-limit should be written as:

$$\mathcal{L}'_{1} = \mathcal{L}_{1} + \frac{1}{\nu_{cmax,25}} * \frac{d\nu_{cmax,25}}{dCi}$$
(29)

$$\mathcal{L}'_{2} = \mathcal{L}_{2} + \frac{1}{j_{cmax,25}} * \frac{dj_{cmax,25}}{dCi}$$
(30)

Where \mathcal{L}_1 and \mathcal{L}_2 are the leaf biochemical responses without the influence from shifts in $v_{cmax,25}$ and $j_{cmax,25}$. \mathcal{L}' will 315 become smaller because of the reduction of $v_{cmax,25}$ and $j_{cmax,25}$. And it has been observed that $j_{cmax,25}$ and $v_{cmax,25}$ tended to be reduced to a greater extent in grasses and shrubs than in trees (Ainsworth & Long, 2005). Due to the downregulation mechanism, the leaf biochemical response to eCO₂ will diverge more among different C₃ functional groups.

4.2 Variation of β at canopy and ecosystem levels

The two-leaf scaling scheme in CABLE is widely employed by many land surface models, such as Community Land Model version 4.5 (CLM4.5, Bonan et al., 2013) and the Joint UK Land Environment Simulator version 4.5 (JULES4.5, Best et al., 2011; Clark et al., 2011; Harper et al., 2016). We found the responses of ecosystem carbon cycle to eCO₂ diverge primarily because the responses of LAI diverge within and among vegetation types. Besides, GPP of shaded leaves responds stronger than that of sunlit leaves for all C₃ plants. This is because the LAI-dependent scaling factor of shaded leaves increase exponentially with increasing LAI, leading to a rapid change of GPP. Our results also indicate that saturation of GPP is not only regulated by the leaf-level response, but also by the response of the scaling factors to eCO₂. For shaded leaves, the sensitivity of the scaling factor contributes more to the magnitude and trend of $\beta_{GPP_{sha}}$. The evidence all suggests LAI is a key process in modeling the response of ecosystem carbon cycle to climate change.

It has been reported that LAI is overestimated in CMIP5 historical simulations compared with remote sensing LAI products (Anav et al., 2013). Also, many global vegetation models predict increasing LAI in response to eCO₂. Our study also show that LAI responds positively to eCO₂ for all C₃ plants. But experimental results are not consistent. In one review paper with

335

340

12 FACE experimental results, trees had a 21% increase in LAI, herbaceous C₃ grasses did not show a significant change in LAI (Ainsworth & Long, 2005). While some studies reported that LAI dynamics did not significantly change in specific FACE experiments, such as in a high-LAI deciduous broadleaf forest (Norby et al., 2003) and in a low-LAI evergreen broadleaf forest (Duursma et al., 2016). In this study, modelled β effects at the canopy-level are higher than those at the leaf-level for all C₃ plants, whereas it is generally observed in experiments that the leaf-level response is consistently larger than the whole plant response (Long et al., 2006; Leuzinger et al., 2011). One possible reason is that models overestimate the response of LAI to eCO₂, as this study has shown that LAI is an important factor in driving ecosystem response to CO₂ fertilization. And it is also likely the overestimation of the response of LAI to eCO₂ is responsible for the overestimation of CO₂ fertilization in ESMs reported by previous studies (Smith et al., 2015; Mystakidis et al., 2017).

In CABLE, the variation of the response of LAI to eCO₂ within a certain vegetation type is mainly dominated by environmental factors such as temperature, radiation and water. While for different vegetation types, diverse seasonal dynamics of leaf growth introduce additional variation. The overall response of LAI to eCO_2 depends on several processes in this study: (1) NPP 345 increment, (2) change in allocation of NPP to leaf, (3) change in specific leaf area (SLA) in response to eCO₂, (4) PFT-specific minimum and maximum LAI values prescribed in the model. Insensitive responses of LAI to eCO₂ for deciduous needleleaf forest and tundra can be attributed to smaller NPP enhancements in cold areas. Accurate estimate of GPP and NPP is therefore fundamental to realistic LAI modeling. Second, we assume that allocation fractions are not affected by environmental conditions by fixing allocation coefficients in this study. However, results from two FACE (Duke Forest and Oak Ridge) 350 experiments indicate that the carbon allocated to leaves is decreased and more carbon is allocated to woods or roots at higher CO₂ concentration (De Kauwe et al., 2014). Third, we fixed SLA to calculate LAI in CABLE. But a reduction in SLA is a commonly observed response in eCO₂ experiments (Ainsworth et al., 2005; De Kauwe et al., 2014). Tachiiri et al. (2012) also found SLA and β values are most effectively constrained by observed LAI to smaller values in a model. Therefore, the fixed SLA may also lead to over-prediction of the response of canopy cover to eCO₂. Finally, in our results, LAI values for most C₃ 355 plants are below the maximum LAI limits with eCO₂. With only one exception, LAI values of many evergreen broadleaf forest

360

patches saturate at the prescribed maximum value in response to eCO_2 (Fig. S6 and Table. S1). That's why the sensitivity of LAI for evergreen broadleaf forest is low and thus leads to small relative GPP and NPP enhancements. If the preset LAI upper limits are narrowed, β effects might be significantly reduced. Hence model parameters related to LAI need to be better calibrated according to experiments and observations in order to better represent the response of ecosystem productivity to eCO_2 (Qu & Zhuang, 2018).

In this study, the almost identical values and variance of β_{NPP} as those of β_{GPP} within and across C₃ plants suggests carbon use efficiency does not change with eCO₂, as autotrophic respiration is calculated from GPP and plant carbon. The reduced magnitudes of β_{cpool} compared with those of β_{GPP} and β_{NPP} indicates carbon turnover processes make ecosystems respond to eCO₂ less sensitively. A previous study using seven global vegetation models identified carbon residence time as the dominant uncertainty in terrestrial vegetation responses to future climate and atmospheric CO₂ change (Friend et al., 2014). The response of soil carbon storage to eCO₂ also depends on carbon turnover time (Harrison et al., 1993). In our study, soil decomposition rate is assumed not to be affected by CO₂ level, as in most other conventional soil carbon models (Friedlingstein et al., 2006; Luo et al., 2016). However, recent synthesis of experimental data suggests eCO₂ increases turnover rate of new soil carbon (Van Groenigen et al., 2014; Van Groenigen et al., 2016). Within a certain vegetation type, the variation of β_{cpool} across different geographical locations is usually not as large as that of β_{NPP} . But the greatest variation of β_{cpool} and ifferent C₃ plants compared with variations of β_{GPP} and β_{NPP} suggests other processes such as different carbon allocation patterns, plant carbon turnover, and the soil carbon dynamics of various vegetation types, are responsible for the divergence.

375 It should be noted that our study was designed to identify the key process that influences CO_2 fertilization effects without considering nitrogen and phosphorus interactions. β effects might be over-estimated by the neglect of nutrient limitations on plant growth (Hungate et al., 2003; Luo et al., 2004; Thornton et al., 2009). Uncertainty still exists in the response of ecosystem carbon dynamics to eCO₂ with nutrient interactions. Current terrestrial carbon-nitrogen cycle models cannot capture the

response of NPP to eCO_2 in FACE experiments. They also disagree with each other on the responses of nitrogen-based GPP 380 and NPP to eCO_2 because they have diverse mechanisms of C-N coupling (Zaehle et al., 2014).

4.3 Implication for understanding the uncertainty of β values among models

Our theoretical analysis of variability of β values at different levels within and across several plant functional types in CABLE model can offer insights into inter-modal variation of β values revealed by model intercomparison projects. The basic photosynthesis model and two-leaf scaling scheme in CABLE model are shared by many land surface models. It can be inferred that normalized leaf-level β values would diverge little across different land surface models as long as they use Farquhar photosynthesis model with similar expressions for intercellular CO₂ concentration (C_i), Michaelis-Menten constants (K_c , K_o) and CO₂ compensation point in the absence of day respiration (Γ_*) (Luo et al., 1996; Luo & Mooney, 1996). A recent study used 16 crop models to predict rice yield in response to eCO₂ (Hasegawa et al., 2017). They found the variation of yield response across models was not associated with model structure or magnitude of primary photosynthetic response to eCO₂, but was significantly related with the predictions of leaf area. This is consistent with our conclusion about the relative conservative character of leaf-level β . The high association between the response of LAI and response of yield among those models extends our conclusion about internal association between these two variables within a model, highlighting the great need to improve prognostic LAI modeling.

395 Although we analyze a single land-surface model in detail, we suspect our top-level conclusions will be generally applicable. We therefore invite other land-surface modelling groups to similarly analyze their model estimates of β at different hierarchical levels across different geographical locations and vegetation types as we did, and focus more on contributions from change in leaf-level photosynthesis, changes in leaf area index and changes in land carbon residence times.

5. Conclusions

Exploring the variability of β effects at different hierarchical levels within and across different plant types helps reveal model mechanisms that govern terrestrial ecosystem responses to elevated CO₂. Our study using the CABLE model shows that the sensitivities of biochemical and leaf-level photosynthesis to eCO₂ are very similar within and among C₃ plants, in accordance with previous theoretical analysis. While β values of GPP, NPP and ecosystem carbon storage diverge primarily because the sensitivities of LAI to eCO₂ significantly differ within and across vegetation types. After decomposing β values of sunlit and 405 shaded leaf GPP into β of leaf-level photosynthesis and the LAI-dependent leaf-to-canopy scaling factor, we find the latter to be the most important cause of the divergence of model responses. Our results indicate that processes related to LAI need to be better constrained with experiments and observations in order to better represent the response of ecosystem carbon cycle

to eCO_2 .

410 Acknowledgements

We acknowledge Centre for Australian Weather and Climate Research for providing platform to run CABLE model. We thank Tsinghua University for providing Scholarship for Overseas Graduate Studies. This paper is financially supported by the National Key R&D Program of China (2017YFA0604604).

415 **References**

- Ainsworth, E. A., & Long, S. P. 2005. What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A metaanalytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. *New Phytologist*, 165 351-372.
- Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., ... & Zhu, Z. 2013. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System Models. *Journal of Climate*, 26 6801-43.
- Arora VK, Boer GJ, Eby M et al. 2013. Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models. *dx.doi.org*, **26** 5289–314.

- Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R., Ménard, C. B., ... & Mercado, L. M. 2011. The Joint UK Land Environment Simulator (JULES), model description–Part 1: energy and water fluxes. *Geoscientific Model Development*, 4 677-99.
- 425
- Bonan GB, Levis S 2010. Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4). *Geophysical Research Letters*, **37**.
- Bonan, G. B., Drewniak, B., & Huang, M. 2013. *Technical Description of Version 4.5 of the Community Land Model* (*CLM*) (NCAR Technical Note NCAR/TN-503+ STR, Boulder, Colorado) pp. 259-74.
- 430 Canadell, J. G., Pataki, D. E., Gifford, R., Houghton, R. A., Luo, Y., Raupach, M. R., ... & Steffen, W. 2007. Saturation of the terrestrial carbon sink (pp. 59-78). *Springer Berlin Heidelberg*.
 - Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., ... & Boucher, O. 2011. The Joint UK Land Environment Simulator (JULES), model description-Part 2: carbon fluxes and vegetation dynamics. *Geoscientific Model Development*, 4 701.
- 435 Collatz, G. J., Ball, J. T., Grivet, C., & Berry, J. A. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. *Agricultural and Forest Meteorology*, 54 107-36.
 - Collatz, G. J., Ribas-Carbo, M., & Berry, J. A. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. *Functional Plant Biology*, **19** 519-38.
- 440 Cox P. M., Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. *Nature*, **408** 184–7.
 - Cox, P. M. 2001. Description of the TRIFFID dynamic global vegetation model. Hadley Centre technical note, 24 1-16.
 - De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Wang, Y. P., ... & Wårlind, D. 2014. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate
- forest free-air CO₂ enrichment sites. *New Phytologist*, **203** 883-99.
 - Duursma, R. A., Gimeno, T. E., Boer, M. M., Crous, K. Y., Tjoelker, M. G., & Ellsworth, D. S. 2016. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability. *Global change biology*, 22 1666-1676.
- Drake, B. G., Gonzàlez-Meler, M. A., & Long, S. P. 1997. More efficient plants: a consequence of rising atmospheric CO₂?
 Annual review of plant biology, 48 609-39.
 - Ewert, F. 2004. Modelling plant responses to elevated CO₂: how important is leaf area index? Annals of botany, 93 619-627.
 - Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J. A., Barraclough, A. D., & Hovenden, M. J. 2016. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO₂. *Proceedings of the National Academy* of Sciences, **113** 12757-62.

485

- 455 Farquhar, G. V., von Caemmerer, S. V., & Berry, J. A. 1980. A biochemical model of photosynthetic CO₂ assimilation in leaves of C3 species. *Planta*, **149** 78-90.
 - Friedlingstein P, Cox P, Betts R et al. 2006. Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. *Journal of Climate*, **19** 3337–53.

Friedlingstein P. 2015. Carbon cycle feedbacks and future climate change. Phil. Trans. R. Soc. A, 373 20140421.

460 Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts, R., Cadule, P., ... & Ito, A. 2014. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO₂. *Proceedings of the National Academy of Sciences*, **111** 3280-5.

Fung, I. Y., Doney, S. C., Lindsay, K., & John, J. 2005. Evolution of carbon sinks in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 102 11201-6.

- Gregory, J. M., Jones, C. D., Cadule, P., & Friedlingstein, P. 2009. Quantifying carbon cycle feedbacks. *Journal of Climate*, 22 5232-50.
 - Hajima, T., Tachiiri, K., Ito, A., & Kawamiya, M. 2014. Uncertainty of Concentration–Terrestrial Carbon Feedback in Earth System Models*. *Journal of Climate*, **27** 3425-45.
- Harper, A. B., Cox, P. M., Wiltshire, A. J., Jones, C. D., Mercado, L. M., Atkin, O. K., ... & Soudzilovskaia, N. A. 2016.
 Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4. 2) using plant trait information. *Geoscientific Model Development*, **9** 2415.
 - Harrison, K., Broecker, W., & Bonani, G. 1993. A strategy for estimating the impact of CO₂ fertilization on soil C storage. *Global Biochemical Cycles*, **7** 69-80.
- Hasegawa, T., Li, T., Yin, X., Zhu, Y., Boote, K., Baker, J., ... & Fumoto, T. 2017. Causes of variation among rice models in
 yield response to CO 2 examined with Free-Air CO 2 Enrichment and growth chamber experiments. *Scientific Reports*, 7 14858.

- Iversen, C. M., Keller, J. K., Garten, C. T., & Norby, R. J. 2012. Soil carbon and nitrogen cycling and storage throughout the
 soil profile in a sweetgum plantation after 11 years of CO₂-enrichment. *Global Change Biology*, **18** 1684-97.
 - Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G. K., ... & Hasselmann, K. 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. *Global Biogeochemical Cycles*, **15** 891-907.
 - Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., ... & Houghton, R. A. 2015. Global carbon budget 2015. *Earth System Science Data*, **7** 349-96.
 - Leuning, R. 1990. Modelling stomatal behaviour and and photosynthesis of *Eucalyptus grandis*. *Functional Plant Biology*, **17** 159-75.

Heimann, M., & Reichstein, M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. *Nature*, 451 289.Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y., & Field, C. B. 2003. Nitrogen and climate change. *Science*, 302 1512-3.

- Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., & Körner, C. 2011. Do global change experiments overestimate impacts on terrestrial ecosystems? *Trends in ecology & evolution*, **26** 236-41.
- 490 Long, S. P., Ainsworth, E. A., Rogers, A., & Ort, D. R. 2004. Rising atmospheric carbon dioxide: plants FACE the Future*. *Annu. Rev. Plant Biol.*, **55** 591-628.
 - Long, S. P., Ainsworth, E. A., Leakey, A. D., Nösberger, J., & Ort, D. R. 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO₂ concentrations. *Science*, **312** 1918-1921.
- Luo, Y., Sims, D. A., Thomas, R. B., Tissue, D. T., & Ball, J. T. 1996. Sensitivity of leaf photosynthesis to CO₂ concentration
 is an invariant function for C3 plants: A test with experimental data and global applications. *Global Biochemical Cycles*, 10 209-222.
 - Luo, Y. and H.A. Mooney. 1996. Stimulation of global photosynthetic carbon influx by an increase in atmospheric carbon dioxide concentration. (In G.W. Koch and H.A. Mooney (eds.) *Carbon Dioxide and Terrestrial Ecosystems*. Academic Press, San Diego) pp. 381-97.
- 500 Luo, Y., Su, B. O., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., ... & Pataki, D. E. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. *AIBS Bulletin*, **54** 731-9.
 - Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., ... & Georgiou, K. 2016. Toward more realistic projections of soil carbon dynamics by Earth system models. *Global Biochemical Cycles*, **30** 40-56.
- Matthews, H. D., Eby, M., Weaver, A. J., & Hawkins, B. J. 2005. Primary productivity control of simulated carbon cycle– climate feedbacks. *Geophysical research letters*, **32**.
 - Mystakidis, S., Seneviratne, S. I., Gruber, N., & Davin, E. L. 2017. Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks. *Environmental Research Letters*, **12** 014009.
 - Norby, R. J., Sholtis, J. D., Gunderson, C. A., & Jawdy, S. S. 2003. Leaf dynamics of a deciduous forest canopy: no response to elevated CO₂. Oecologia, **136** 574-584.
- 510 Peng, J., Dan, L., & Huang, M. 2014. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison. *PloS one*, **9** e95282.
 - Qu, Y., & Zhuang, Q. 2018. Modeling leaf area index in North America using a process-based terrestrial ecosystem model. *Ecosphere*, 9.
- Smith, W. K., Reed, S. C., Cleveland, C. C., Ballantyne, A. P., Anderegg, W. R., Wieder, W. R., ... & Running, S. W. 2016.
 Large divergence of satellite and Earth system model estimates of global terrestrial CO₂ fertilization. *Nature Climate Change*, 6 306-10.
 - Tachiiri, K., Akihiko, I. T. O., Hajima, T., Hargreaves, J. C., Annan, J. D., & Kawamiya, M. 2012. Nonlinearity of land carbon sensitivities in climate change simulations. *Journal of the Meteorological Society of Japan. Ser. II*, **90** 259-74.
- Thornton, P. E., Doney, S. C., Lindsay, K., Moore, J. K., Mahowald, N., Randerson, J. T., ... & Lee, Y. H. 2009. Carbon nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. *Biogeosciences*, 6.

525

- Van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y., & Hungate, B. A. 2014. Faster decomposition under increased atmospheric CO₂ limits soil C storage. *Science*, 1249534.
- van Groenigen, K. J., Osenberg, C. W., Terrer, C., Carrillo, Y., Dijkstra, F., Heath, J., ... & Hungate, B. A. 2016. Faster turnover of new soil carbon inputs under increased atmospheric CO₂. *Global Change Biology*.
- Wang, Y. P., & Leuning, R. 1998. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I:: Model description and comparison with a multi-layered model. *Agricultural and Forest Meteorology*, **91** 89-111.
- Wang, Y. P., Law, R. M., & Pak, B. 2010. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. *Biogeosciences*, **7** 2261.
- Wang, Y. P., Kowalczyk, E., Leuning, R., Abramowitz, G., Raupach, M. R., Pak, B., ... & Luhar, A. 2011. Diagnosing errors in a land surface model (CABLE) in the time and frequency domains. *Journal of Geophysical Research: Biogeosciences*, 116.
- Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., ... & Jain, A. 2014. Evaluation of 11
 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO₂ Enrichment studies.
 New Phytologist, **202** 803-22.
 - Zeng N. 2004. How strong is carbon cycle-climate feedback under global warming? *Geophysical Research Letters*, **31** L20203–5.

Table 1 Coefficients of variation of \mathcal{L} , dC_i/dC_a , β_p , β_{LAI} , β_{GPP} , β_{NPP} and β_{cpool} across different geographical locations within each540C3 vegetation type. The two numbers in the same unit are for sunlit leaves and shaded leaves respectively. Values for shaded leaves are in
brackets. Abbreviations are the same as Figure 1.

	ENF	EBF	DNF	DBF	SHB	C3GRAS	TUN
CV(<i>L</i>)	0.25(0.30)	0.27(0.29)	0.25(0.27)	0.39(0.39)	0.33(0.33)	0.39(0.35)	0.34(0.33)
$CV(dC_i/dC_a)$	0.21(0.16)	0.09(0.07)	0.1(0.09)	0.14(0.11)	0.08(0.28)	0.10(0.08)	0.1(0.09)
$\mathrm{CV}(\beta_p)$	0.47(0.36)	0.25(0.29)	0.27(0.26)	0.44(0.37)	0.33(0.41)	0.40(0.36)	0.34(0.33)
$CV(\beta_{LAI})$	3.21	1.43	1.15	1.49	1.56	2.18	3.83
$CV(\beta_{GPP})$	2.73	0.43	0.95	1.22	1.27	1.14	1.75
$CV(\beta_{NPP})$	4.78	0.38	0.96	1.41	1.30	1.11	1.73
$CV(\beta_{cpool})$	1.28	0.46	0.37	0.80	0.98	0.99	1.85

545

Figure 1 Temporal trends of β_{cpool} from 2011 to 2100 for C₃ plants in CABLE. β_{cpool} values for different C₃ plants all decline with time from 2011 to 2100 under RCP8.5 scenario, but the magnitudes of β_{cpool} differ across them. ENF, Evergreen Needle leaf Forest (light green square); EBF, Evergreen Broad leaf Forest (red circle); DNF, Deciduous Needle leaf Forest (dark blue triangle); DBF, Deciduous Broad leaf Forest (pink triangle); SHB, Shrub (dark green diamond); C3GRAS, C₃ grass (dark blue star); TUN, tundra (orange diamond).

Figure 2 Responses of yearly intercellular CO₂ concentration to eCO₂ of a single sunlit leaf (a) and shaded leaf (b) for C₃ plants. Temporal trends of CO₂ compensation point in the absence of day respiration (Γ_*) for sunlit leaf (c) and shaded leaf (d) from 2011 to 2100 in CABLE. The ratios of C_i to C_a (C_i/C_a) are approximately constants with eCO₂ for each vegetation type and vary little between vegetation types. Γ_* values vary across global vegetation types, but do not change through time for each vegetation type. Abbreviations and symbols are the same as Figure 1.

Figure 3 β values at different levels for various C₃ plants at the year 2056 in CABLE. CV means coefficient of variation among C₃ plants. β values at biochemical and leaf-level are very similar among vegetation types, but greatly diverge at GPP, NPP and ecosystem carbon storage level. Abbreviations and symbols are the same as Figure 1.

560

565

Figure 4 Correlations between β_{GPP} and β_{LAI} (a), β_{NPP} and β_{LAI} (b), β_{cpool} and β_{LAI} (c) at the year 2056 among C₃ plants in CABLE. β_{GPP} , β_{NPP} and β_{cpool} all have significant linear correlations with β_{LAI} but with different slopes. Abbreviations and symbols are the same as Figure 1.

Figure 5 Temporal trends of GPP_{sun} (red point) and GPP_{sha} (black point) for C₃ plants from 1901 to 2100 in CABLE. GPP_{sha} is higher than GPP_{sun} for almost all vegetation types. With significant increase of CO₂ concentration from 2011, GPP_{sha} responds more drastically than GPP_{sun} .

595

Figure 6 Temporal trends of $\beta_{GPP_{sun}}$ (red square), $\beta_{GPP_{sha}}$ (green square), $\beta_{S_{sun}}$ (pink triangle), $\beta_{S_{sha}}$ (dark blue triangle), $\beta_{p_{sun}}$ (purple diamond) and $\beta_{p_{sha}}$ (sky blue diamond) for C₃ plants in CABLE. The sensitivities of GPP_{sun} and GPP_{sha} tend to approach zero through time because the decomposing factors $\beta_{p_{sun}}$, $\beta_{p_{sha}}$, $\beta_{S_{sun}}$ and $\beta_{S_{sha}}$ all decline with time. $\beta_{S_{sha}}$ determines the magnitudes and trends of $\beta_{GPP_{sha}}$ for almost all vegetation types.

600